UVa 10038 - Jolly Jumpers Solution

 Must watch:  More UVa Problem solution

Description: 

10038 - Jolly Jumpers


A sequence of n > 0 integers is called a jolly jumper if the absolute values of the difference between successive elements take on all the values 1 through n − 1.

For instance, 1 4 2 3 is a jolly jumper, because the absolutes differences are 3, 2, and 1 respectively. The definition implies that any sequence of a single integer is a jolly jumper.

You are to write a program to determine whether or not each of a number of sequences is a jolly jumper.

Input 

Each line of input contains an integer n ≤ 3000 followed by n integers representing the sequence.

Output 

For each line of input, generate a line of output saying ‘Jolly’ or ‘Not jolly’.

Solution:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#include<stdio.h>
#include<stdlib.h>



int main()
{
int n,arr[4000],item[4000],i,j,diff=0;
    while(scanf("%d",&n)==1)
    {
        for(i=1;i<=n;i++)
            arr[i]=0;
        for(i=1;i<=n;i++)
            scanf("%d",&item[i]);
        if(n!=1)
        {
            for(i=1;i<n;i++)
            {
                diff=abs(item[i]-item[i+1]);
                if(arr[diff]==0)
                    arr[diff]=1;
                else
                {
                    printf("Not jolly\n");
                    break;
                }
                if(i==(n-1))
                {
                    for(j=1;j<n;j++)
                    {
                        if(arr[j]==0)
                        {
                            printf("Not jolly\n");
                            break;
                        }
                        else if(j==(n-1))
                            printf("Jolly\n");
                    }
                }
            }
        }
        else
            printf("Jolly\n");
    }

    return 0;
}

Keywords: jolly jumpers uva solution, jolly jumper program in c,uva 10127, 10038 - jolly jumpers, jolly jumper sequence, uva 10038, uva10055, 3n+1 problem solution


See More:

Post a Comment

Previous Post Next Post